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In the present Part I the complete system of exact equations describing a nonstationary 
state of an axially symmetric relativistic object consisting of a perfect fluid is reduced 
to the form suitable for the numerical integration by a computer. It is assumed that all 
the thermodynamic processes are adiabatic and no nuclear energy is being released, 
but no restriction is imposed on the analytically expressed equation of state. 
method it is possible to compute the initial data and the time evolution of the interior 
and exterior field generated either by a single rotating and contracting (or expanding) 
body, or by two neutron stars before and during their head-on collision. In Part II the 
method of the numerical integration will be described, its efficiency discussed, and a 
few examples of integration exhibited. 

INTRODUCTION 

A spherically symmetric star with an overcritical mass collapses into a black 
hole when its nuclear fuel is exhausted. However, since one can hardly i 
an astronomical object which exhibits no rotation at all with respect to the back- 
ground cosmic field (in the case of a single object in the infinite empty space the 
body rotates with respect to the Minkowskian metric at infinity or, in the author’s 
interpretation of Minkowskian metric [I], with respect to the infinite mass o 
Minkowskian universe distributed uniformly and isotropically with a zero density 
over the infinite cosmic space), a collapse of a spherically symmetric body is a 
process compatible with the Einstein field equations, and easy to handle from the 
mathematical standpoint, but which very probably never occurs in the actual 
Universe (like the geons [2]). The collapse of a star must be thus investigator taking 
into consideration its rotation whose angular velocity steadily increases during the 
contraction because of the conservation of the angular momentum and cannot be 
therefore considered as a small, linear, perturbation. 

* Supported in part by the National research council of Canada. 
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A rotating and collapsing object is a source of gravitational radiation as well. 
Also two neutron stars before and during their collision emit gravitational waves. 
Under which conditions is this radiation strong enough to be observable by 
terrestrial detectors of gravitational waves ? 

Because of the extreme relativistic conditions a reliable answer to those two 
important questions of contemporary relativistic physics can result only from an 
investigation based on exact Einstein equations. The aim of the present paper is 
to show that with the help of a computer such an investigation is feasible, and in 
fact simple, in spite of the complicated form of the Ricci tensor. 

The general relativity is distinguished by four important features: the equations 
of motion are the integrability conditions of the field equations; the field equations 
are invariant under general transformations of coordinates; in the harmonic 
coordinates the field equations for the empty space reduce in the weak field 
approximation to the homogeneous wave equations; there exists a certain mixed 
null tensor of the second rank whose four components depend upon the Cauchy 
data only. As a consequence, the complete system of equations describing the 
behaviour of a perfect fluid under assumption of adiabatic thermodynamic 
processes and no release of nuclear energy can be reduced to 6 independent 
Einstein field equations for 6 unknown components of the metric tensor and to one 
algebraic equation for the proper rest mass density (Sec. I); a system of comoving 
coordinates can be chosen in which the field equations can be numerically inte- 
grated in the most simple way (Sec. IT, III); the Cauchy initial data problem can be 
properly formulated (Sec. V); and the four components of the null tensor which 
represent just the Lichnerowicz initial conditions (Sec. VII) serve as a sensitive and 
very important indicator for estimating the total amount of the roundoff and 
truncation errors in the process of the numerical integration of the 6 Einstein field 
equations (Sec. III). 

The choice of the comoving coordinates is unavoidable for the present method of 
numerical integration of Einstein equations. This choice is connected, of course, 
with certain disadvantages; for instance, it is difficult to determine the geometrical 
dimensions of a rotating and contracting, or expanding, object. However, for 
comparison of the theory with observations this and similar questions are 
irrelevant; the explosion of a collapsing star and the distant radiation field, if strong 
enough, can be observed and measured, but not the radius of the object. 

In order to demonstrate the clarity of the logical and mathematical structure of 
the general relativity theory appropriate substitutions are introduced in the main 
text which make the equations very simple. The explicit expressions for these 
substitutions which are given in the appendices are, of course, complicated enough, 
but not as much to make the numerical integration by a computer impossible. 

In the preceding two papers [3,4] the integration method was applied only in the 
region occupied by a rotating incoherent matter and the influence of the back- 
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scattering of radiation upon the interior field was fully neglected. Since the results 
of those tests of the efficiency and limits of applicability of the ~nte~at~o~ method 
are very promising, the method is now extended to a perfect fluid with an arbitrary 
equation of state. The equations deduced below descri e the interior and exteri 
field as well. The back-scattering of radiation and th interaction with the 
of another body are also taken into consideration. 

In the present paper a metric with signature +2 is assumed and a system of units 
used in which the velocity of light and the Newtonian constant of gravitation are 
equal to 1. A comma indicates a partial derivative, but where there is no danger of 
confusion the comma is omitted. The Riemannian derivative is denoted by a 
semicolon. Greek indices run from I to 4, Latin indices from 1 to 3. 

1. COMPLETE SYSTEM OF EQUATIONS FOR ~~N-§~MM~~~~ FIELDS 

The complete system of 13 equations describing the behavior of a perfect flui 
can be reduced in a particular system of comoving coordinates to 6 Einsteln field 
equations and 1 equation of continuity [5, 6j.l As prerequisites the red~ct~o 
process will be here briefly summarized once again. 

Let JJ indicate the pressure, p the proper rest mass density and E the 
internal energy per unit mass. The four-velocity will be denoted 
and the usual substitution 

g = det gws 
applied throughout. 

The components of the energy-momentum tensor of the perfect 
by the expression 

T,, = e*pu,u, + pg,, , (1”lj 
in which 

e”=l+E+P/p (a.2) 

represents the enthalpy per unit mass. 
Assuming that all the thermodynamic processes are adiabatic and no ~~~~~ar 

energy is being released, but supposing no geometric symmetry at al compB 
system of equations consists of one equation of state (of any given in WI3 
the pressure vanishes when the mass density equals to zero) 

Y = P@, 4; /w 

1 The author thanks one of the referees for calling attention to the following two papers where 
Eqs. (1.6) and (1.7) also were integrated and equations deduced similar to those given in this Sec. I: 
A. H. TAUB, “Fluids et Champ Gravitational en Relativitb G&&ale,’ 57 ff, Centre ~~ti~~a~ 
de la Recherche Scientifique, Paris, 1969; B. F. SCHULTZ, Whys. Rev. il970), 2762. 
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of the conservation law of baryon number, which reduces in the case under 
consideration to the equation of continuity 

(-g)-1/2[pu”(-g)1/2],p = 0. , 

of the normalization equation for the four-velocity 

(1.4) 

g&“u~ = -1; (1.5) 

of (1 + 3) equations of motion 

T& = 0, (lJ5) 

T,":, = 0, (1.7) 

and of 6 independent Einstein field equations 

Rik = 8r(Td, - $Tgi,). (1.8) 

The initial conditions for the metric tensor cannot be chosen quite arbitrarily, 
but they must satisfy four Lichnerowicz initial conditions [7] 

$Iti4 = R," - +RSu4 - 87rTp4 = 0. (1.9) 

Since the system of 13 equations has to be satisfied by 17 functions, i.e. by 
3 quantities of state, 4 components of the four-velocity, and 10 components of the 
metric tensor, four coordinate conditions must be now added. There is no doubt 
that the Ricci tensor takes a simpler form, say, in the synchronous reference frame 
of Landau and Lifshitz [S] or in the coordinate system recently used by 
Chandrasekhar and Friedman [9], but the author succeeded in reducing the 
preceding equations to a lower number only in a particular system of comoving 
coordinates. The applied method of numerical integration also requires the 
introduction of the comoving coordinates [4]. 

In the comoving coordinates, defined by 3 conditions 

ui zzz 0 2 (1.10) 

the only nonvanishing contravariant component u4 of the four-velocity follows 
immediately from Eq. (1.5) 

u4 = (-g44)-v2 (1.11) 

and the equation of continuity (1.4) can be easily integrated giving 

P = (g44W2 ~W (1.12) 
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where Y(xj) is determined by the initial distribution of the mass density. Su 
tuting P,~ from Eq. (1.4) into Eq. (1.6) and taking into account (1. IO) and the fact 
that the equation of state (1.3) does not contain explicitly any coordinate xa9 
Eq. (1.6) may be now replaced by an equivalent, but simpler relation 

d+% = pIp2 (1.13) 

expressing the conservation of energy in the perfect fluid at a constant entropy 
(in the form familiar from elementary thermodynamics). 

With the help of (I .13) and (1.12) the 3 equations of motion (1.7) reduce to the 
form 

(gi4/g4&a/3x4) ln[gi4eX(-g,4)-1/z] - (a/M) ln[ex(-g,,)l/z] = 0. (1 .l4) 

e integrated in a closed form if the condition 

(ajaxi) ln[ex( -g,,)1/2] = 0 (%*15a) 

is chssen as the fourth coordinate condition. The integration of (I. 15a) yields 

g,, = -[A4(kA) e+12. (l.l5b) 

A&c~) being an arbitrary function. As a consequence of (I-Isa), Eq. (I. B 
after integration 

gi4 = -AiA4e-2X (Ll6) 

where A@) are three functions of spatial coordinates determined by the initial 
conditions. 

For a given equation of state (1.3) the pressure p and the enthalpy ex may be now 
considered as known functions of the mass density which is determines by the 
algebraic equation (1.12). Since the components g,, are given by (1.15b) and (I. IQ, 
the remaining unknown functions are the 6 components g,, of the metric tensor 
determined by the 6 field equations (1.8). 

The covariant components of the four-velocity take now the values 

u, = u4gp4 = --A,e-X. (1.17) 

With their help the components g,, may be also expressed in the form 

&A4 = -w4 * (l.SS> 

Since the enthalpy ex is a scalar, A, is a four-vector. Similar to u*: it has only 
one nonvanishing contravariant component 

A4 = -$ex = --&IA,. (l..Eq 
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The four-vector of vorticity is defined by the formula [lo] 

J-P = &( -g)-112 P%q&, , @“fly = il, 0. (1.2Oa) 

It reduces with the help of Eq. (1.17) to 

Q@ = &( -g)-‘12 ,+“ByAuAB,ye-2X. (1.2Ob) 

This vector is curl of A, ; therefore it is perpendicular to A@ [7]: 

@A, = 0 (1.21) 

The motion of matter is irrotational if the tensor of vorticity 

iWi,, - Ad 

vanishes. In this case it is always possible by a coordinate transformation to reduce 
all the Ai to zero. 

II. CHOICE OF THE COORDINATE SYSTEM 

Without any loss of generality the choice of the coordinate system, limited 
already by Eqs. (1.10) and (l.l5b), will be now restricted by further conditions in 
order to make the explicit expressions for the Ricci tensor as simple as possible and 
to make easier also the solution of the difficult problem of Lichnerowicz initial 
conditions. This particular coordinate system was applied in the preceding two 
papers [3,4] without proof that its applications did not imply a loss of generality. 
In this section the missing proof is given. 

The (3 + 1) coordinate conditions (1.10) and (1.15b) restrict the allowed 
transformations of coordinates to the following ones 

2 = 2(x1, x2, x3), (2.1) 

x4 = X4(x4). (2.2) 

By the transformation (2.2) it is always possible to reduce I A4 1 to 1, but then the 
allowed transformations are restricted to those defined by (2.1) and by 

X4 = &x4 + const. (2.3) 

The vector Au has the direction of the time axis x4 and is always perpendicular 
to the vorticity vector QU [cf. Eqs. (1.19) and (1.21)]. By the transformation (2.1) 
it is thus possible to reduce an arbitrary system of three spatial coordinates to an 
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orthogonal system whose x1 direction coincides at any point with the ~r~~o~ of 
the vector 4~. In the new coordinate system it holds at any moment [ll] t 

Ql # Q, p = Q3 = Q-4 = 0, (2.4) 

and that [cf. Eq. (1.2Ob)j 

A: = 0, A, = X2(X2, X"), rr, = A#, X3), !&i = k, (2.5) 

but 

g,2 = g,; = 53 = 0 (2.6) 

only al Z4 = 0. 
y the subsequent transformation 

(2.7) 

the component J2 can be reduced at any moment to zero 

2, Es A2(ai2/a12) + A,(iP/ 2~2) = 0, 

the axis ZE remains everywhere orthogonal to SF and to E3, but since &, and & 
depend, in general, on ?, the component 

8,s = g2,(a~2/a~2)(ax2/ax=“) f g3,(aR”/ax=2)(a13/a53) 

can vanish only for one chosen value of Z1 = Z?, say Z1 = 0. The axis Z2 remains 
thus orthogonal to Z3 only at Z1 = 0. It now holds (the double bars are o 
that 

A, = A, - 0, A, = A&x2, x3), \&I = 1, (2.8) 

at any moment, and at the initial moment only 

?Tl2 = gm = 0 
g,, = 0 at 

everywhere, (2.9a) 
x1 = 0. (2913) 

The transformations of coordinates are now restricted to 

Xl = X1(x1), 9 = jq$-), 33 = 5i3(x3), (2. IO) 

and to Eq. (2.3). The reduction of A, to (2.8) sjmplifies the Ricci tensor, the 
reduction of the initial values of g,, to (2.9a,b) simplifies the solution of the 
Lichnerowicz initial conditions. 

The field of the vorticity filaments, represented by the lines n2 = const., 
pc3 = const., determines thus the direction of the x1 axis. Its position is given by 
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the condition that at it the +component of the pressure gradient vanishes. If the 
field exhibits an axial symmetry, its axis is chosen, of course, as the x1 axis. 

In the numerical integration the unknown functions &l, are computed at equally 
spaced grid points. The exterior field at large distances from the body generating 
the field varies in space as well as in time more smoothly than the interior field. 
The geometrical distances between the grid points thus may be chosen far greater 
at the periphery of the integration domain than inside the body. This can be 
achieved by the coordinate transformations (2.10) which reduce g,, and g,, at the 
initial moment to 

al = e zor*(&) at x2 = 0 3 (2.11a) 

g2, = e 2i%& at xl = 0 , x3 = const., (2.11b) 

where “*(xl) and p”(x2) are two properly chosen functions (CX* = j? = 0 at the 
periphery of the integration domain, LY * < 0, p” < 0 inside the body-cf. Sec. VII). 
If the field is axially symmetric, the component g,, takes the chosen values at the 
whole hyperplane x1 = 0. 

The conditions (2.1 la,b) and the requirement that the metric has to be Euclidean 
in the infinitesimal neighborhood of the x1 axis restrict the allowed transformations 
of coordinates 

9 = &x1 + con&., 22 = 9 , 

X3 = &x3 + const., Z4 = -&x4 + const., 
(2.12) 

to the translation of the origin of the coordinates x1, x3, and x4, and to the 
reflections in these three axes. The position of the origin of the coordinate system 
follows usually from the geometrical symmetry in the integration domain. The 
initial distribution of the mass density and vorticity together with Eqs. (2.8), 
(2.9a,b) and (2.1 la,b) determine uniquely and in the most natural way the comoving 
coordinate system. It is no more necessary to carry out the important, but some- 
times difficult (in the case of numerical integration almost impossible), investigation 
whether a given metric tensor corresponds to a new physical situation or has been 
generated from a known one by a mere transformation of coordinates. 

III. AXIALLY SYMMETRIC FIELD EQUATIONS 

In this and in the following sections the field is supposed to be axially symmetric. 
This assumption simplifies, of course, the equations, but the main reason of this 
restriction lies in the fact that the grid of points where the field is numerically 
computed is two-dimensional, while it must be three-dimensional when the field 
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exhibits no geometrical symmetry at all. As a consequence, the computer time 
would become too long in the latter case. 

The computer program for the numerical differentiation of the ~orn~~~~~t~ of 
the metric tensor would be far more simple if a systemL of spherical ~o~rd~~at~s 
were chosen, but in this case none of the components Ai could be reduced to zero, 
and what is decisive, the use of the spherical coordinates woul be to advantage 
only if the field generated by a single body were investigated. Therefore the 
~y~~~dr~~~~ coordinates (z, r, 4, f) are preferred, with the metric in the form 

&2 = $a da2 + e2a &2 + ($n - A+-zx) &$2 - e-2X dt’ 

+ 2lJdzdr + 2Vdzdcj +- 2 W dr d+ - 2Ae-“x d+ dt. (3.1) 

The unknown functions 01, p, 7, U, V, W, x depend on z, r’, I, and, in agreeme 
with Eq. (2.8), 

A = A(r). (3.2) 

It is very important to take g,, = (e2n - A2e-2x)z because then Eq. (1.12) 
m.ines p as an algebraic function of e2az e 2fl, e2”, U, V, W, but not of X, which de 
on the equation of state and may thus be a complicated function of ,o.~ 

The determinant of the metric tensor and its contravariant components are to be 
computed first in the usual way.3 For the calculation of the components of the 
tensor forms have been used [12] which are based on the formula 

KLIJ = &PQ.w43 + gYo.uct - guv,aB - &s,J i ‘Pvw> Pm $9 - (7, if-w?@% 
nrvolving only algebraic operations and Christoffeil symbols of the first kind 

With the help of the forms the calculation of R,, is easy; possibly it does not re 
more time than translating the corresponding results obtained by a computer 
Fortran language into the usual mathematical symbols. The subsequent reduction 
of these results to a compact form (which must be carried out in order to k 
the computer time as short as possible) takes more time and hardly can be don 
the computer. 

The metric (3.1) is Euclidean in the infinitesimal neighborhood around the z axis 
if 

-q(z, r, t) = a(z, I, t) + In r 
and 

cr=p at I = 0. 

p Cf. the last equation on p. 285 in [6]. 
3 Cf. Eqs. [3.3]-[3.6] in 131. 

(3.3a) 

(3.3b) 
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The vorticity vector LP is finite at the z axis if 

A = j+(r) = r2Q*e2v(r), a* = const., v(0) = 0. (3.4) 

Its square, given by the relation 

1 8 12 = g,,!LMP, (3.5) 

is identical with the square of the angular velocity measured (c = 1) by a local 
observer. 

In a preceding paper [3] it has been shown that the field is regular at the z axis 
at least at the initial moment and at its infinitesimal past and future only if* 

u = r&l, v = Pv, and w = Y3W, (3.6) 

and if the functions 01, p, CT, u, v, w, x, p, V, are even functions in r. If the mass 
exhibits also a reflection symmetry with respect to the hyperplane z = 0, the 
functions 01, fi, u, w, x, p, v, are even functions in z, while IL and v are odd functions 
in 2. 

After the functions 7, U, V, and W have been replaced by (T, u, v, and w by 
Eqs. (3.3a,b) and (3.6), the determinant of the metric tensor and its contravariant 
components as well as the Ricci tensor take a slightly different form. Appendix A 
contains the formulas for g and g uLy. The functions P* defined in Appendix A are 
not tensors; their superscripts just indicate in which relation they stand to the 
contravariant components of the metric tensor. 

The 6 independent Einstein field equations (1.8) may be now expressed as follows: 

ol,, = (4rp(eX - $4~) + ~,JP~~* (3.7a) 

A4 = +-p(@ - 2plp) + ~2dleZxk44 (3.7b) 
u,, = {4n-p[(eX - 2p/p) + a2r2e-2u-2x(ex + 2p/p)] + P33)/e2xk44 

- e--20--2xy2~2x44 (3.7c) 

u,, = (Sz-p(ex - 2p/p)u + P12)le2xk4* (3.7d) 
vg4 = (8rrp(ex - 2p/p)v + P13)/e2xk4* (3.7e) 

w4* = {8rp(ex - 2p/p)w + Pa}/e2xk4* (3.7f) 

Henceforth subscripts at the functions CL, /3, u, U, v, w, x, p, v indicate the partial 
derivatives; the comma is omitted here. The functions Puv are defined in Appendix B 
together with the substitutions introduced to simplify the formulas for P,, . The Puy 
are not tensors; their subscripts just indicate in which relation they stand to the 
covariant components of Ricci tensor. In computing PMv the relation 

k44 + e-20-2xk33a2r2 = 1 (3.8) 

* The functions v and w are defined here in a slightly different way from those in [3]. 
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following from the formulas of Appendix A was repeatedly used. As a consequence, 
one finds terms in P,,, that are formed by a product of two first derivatives sf 
metric tensor, but contain one coefficient IF (or none). The metric (3.1) as well as 
the functions PUV are invariant with respect to the following sim~~t~neo~s permu- 
tations: 

2 * r, 1 * 2, 01 * P> r2u * r3w. 

This invariance is a powerful means for eliminating possi 
computation5 However, because the function A does not 
coordinate, the terms containing the derivatives A,, and A,,, have no counterpart 
and must be therefore checked especially carefully. 

Since the components gi, (i f k) vanish at the z axis as given by Eqs. (31.6)~ 
the field is here regular. In spite of it the functions PuV contain terms that have an 
indeterminate form O/O, or co - 00. Therefore two sets of the functions LIy must 
be used: one set for the space with r > 0, and the other for rbe z axis and denoted 
by an asterisk, P,*y , in which the indeterminancy is analytically evaluated. The 
third derivatives occurring in PzV are the result of the limiting process r + 0, for 
instance, 

(The asterisk indicates here, and henceforth, the value of the friction at r = 0). 
The geometrical properties of space are describe by the positive deplete metric 

of Landau and Lifshitz [8] 

dS2 = yik dxi dxk :3,9a) 
With 

yik = g,, - .%&k&M > yik = @k* (3.9b) 

In the metric (3.1) all the components of Yik are identical with gik with the exception 
of 

y33 I g,, + Aze-zx E e2n = ,r2ez0. (3.10) 

The mass density p is determined in the g,, metric by the equation of cont~~~~t~ 
(1.12). Hn the yik metric Eq. (1.12) reduces to 

p = Y/(det yik)li2. (3.3 Ia) 

It is thus the expansion, or contraction, of space described by the three-d~~~c~s~o~a~ 
metric (3.9a,b) which directly determines the proper rest mass density. The explicit 
form of (3.1 la) is 

p = ~@2e-n-h3-og (XHlb) 

5 The invariance of the functions Ial,,, with respect to the simultaneous permutations had been 
checked before the functions v, U, V, W were replaced by O, U, v, IV. 
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where K is given by the formula of Appendix A. The function p depending on the 
spatial coordinates only is computed by Eq. (3.11 b) from the initial data of the 
metric and mass density. 

The functions P,, and P,*y and the field equation (3.7~) contain derivatives of the 
function x. The differentiation of Eq. (1.2) with the relation (1.13) taken into 
account yields 

xu = WPE (3.12a) 

xw = (P,JP)E + CO,/PXP~/PNT (3.12b) 

X ,*2z = (&,h*)E + (P,*/P*XP,*,/P*)C (3.12~) 

where the functions E and F depend upon the equation of state 

E = e-x(dp/dp), 

F = e-x[p(d2p/dp2) - (dp/dp)(l + EN. 

(3.13a) 

(3.13b) 

The third derivatives x,*zz (with p = 1, 4) occur only in P,*y . The formula for x,*zz 
has the form (3.12~) because pz * = 0 (for p is always an even function in r). 

The derivative (pa/p) results from the differentiation of Eq. (3.11a): 

Hence 

p41p = -kl$ - kzzp4 - k%ra + e-zm-zok12r2u, 

+ e-2a-20k13r22/4 + e-213-20k23r4W4 . (3.14) 

x4i = WWi)(pdp) + @ + FXP~P)(P~/P), 

xz2 = EK~2/~~2~(~~/~)l,=, + (E + F)(P,*/P*)(P,*,/P*). 

(3.15a) 

(3.15b) 

One differentiation more of Eq. (3.14) with respect to the timelike coordinate 
gives 

p46/p = (~~/p)~ - 2r2P, - kl$, - k22fia, - k33044 

+ e-2~-2Rk12y2u44 + e-2a-20k13r2~44 + e-213-2uk23r4W44 , (3.16) 

with P,, defined in Appendix B. The field equation (1.8) with p = v = 4 may be 
written in the form 

- kllol,, - k22P44 - k330, + e-2a-2Rkl2rZu, + e-2a-20k13r2Zlqq 

+ e-2R-20k23r4W 
44 - e-20-2xk33a2r2x,, - Pd4 = 47rpe-sx(ex + 2p/p) (3.17) 
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The function P,, is also defined in Appendix B. Combining these two e 
together with (3.12b) and (3.8) results in the formula 

X *4 = [I + E(k@ - l)]-” 
x {(E + F)(p,/p)’ + E[4ii-pe-2~(ex + 2p/p) f P,, - 2r2P,]j (3.1 

Once the equation of state (1.3) is given and Eq. (I I 13) is integrated, the enthaipy 
eXs the pressure p, as well as the functions E and F, defined by Eqs. (3.13a,b), may 
be considered as known functions of the mass density p. The derivatives of x are 
reduced by Eqs. (3.12a,b,c), (3.14), (3.15a,b) and (3.18) to the derivatives of the 
mass density. The derivatives of any unknown function occurring in Pil, with respect 
to spatial coordinates may be expressed, using Lagrange formulas for numerical 

rentiation, by the function itself at the given point and at its neighborhoo 
If the cross section, CJ~ = const., of the integration domain is divided into a two- 
dimensional grid of n equally spaced points where the unknown functions OL!, /1, G, 
U, v, W, and p are to be calculated, the set of 6 partial differential equations (3.7a-f) 

may be now considered as a set of 6n simultaneous or ary differential equat~~~~s 
and integrated using, for instance, the fourth-order cage-Kntta method. Tine 
algebraic equation (3.1 lb) determines at each point the seventh unknown f~~c~~~ 
p. However, in each computation of the right-hand sides of (3.7a.f) all the gi” 
and all the derivatives must be evaluated anew and the integration must be carried 
out for all 6n functions simultaneously. 

The finite number n of the grid points is a source of truncation errors in the 
computation of spatial derivatives. Another source sf truncation errors is the 
integration method for ordinary differential equations. The general relativity 
yields, however, a sensitive indicator for estimating the total amount of all the 
errors of the numerical calculation: If the four components of .IU4 given by (1.9) 
vanish at the initial moment, then they vanish also at any mo 
to the rmmerical errors the IU4 will differ from zero at 1 2 0, 
may be used as a criterion of the total amount of errors, for it is 

at the errors could partially cancel each other in the Iti” in s 
order of magnitude of the JU4 would be smaller than the order 
the errors. 

The components I,” may be expressed by the functions .PUy: 

.l14 = e2xk44P14 - e-2ur2a(2k*3P,, + ed2skz3r2Pl,, - k33 

Ia4 = e2xk44P24 - e-20r3a(e-20rk13Pj2 $ 2k2”P,, - kz3P2,), 
I34 = e2xk44P34 - r2[e-2urZa(e-2ak13Pl, 

+ e-2sk23r2P,,) - 2k33P33 - 16rpex], 
I44 = e2xk44P44 +- kllPl, + k22P22 + k33P, 

_ e-2a-2Bk12r2p1a _ e--2a-20k13y2~13 

- e-2@-20k23r4P23 + 16rp(ex -p/p). 
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At r = 0 the formulas for 1T,” reduce to 

I? = 4ezx*{p$ + e-2P*[U*a4* _ tu4* + e-24*-2x*a*v*] 

+ /%*PJ4* - %*I + P4*xl*l? (3.2Oa) 

I,“” = I,“* = 0, (3.20b,c) 

I,“” = e2**Pz + Pl”; + Pz*, + P3*, + 167rp*(eX* -p*/p*). (3.2Od) 

Besides the existence of the four components 1,” = 0, the general relativity 
exhibits another important difference against Newtonian dynamics. In the latter 
the acceleration of a mass element dm is given by the global distribution of the 
mass and, eventually, by the fictitious forces. Because of the hyperbolic character 
of the Einstein field equations the second timelike derivatives in Eqs. (3.7a-f), 
which may be considered as a relativistic counterpart of the classical acceleration, 
are determined by the local value of the mass density and of the curvature of space- 
time expressed by the functions Pik (and, in Eq. (3.7c), also by x4.&. In the Pik the 
whole past gravitational history is hidden, but the present values of Pik , compatible 
with Eq. (19), may be such that the future time evolution is completely different, 
even if the field is weak, from that according to Newtonian dynamics. 

In a system of noncomoving coordinates the functions Pik have a far simpler 
form [9]. However, it is only in the comoving coordinates that the complete system 
of 13 equations can be reduced to 6 differential equations (3.7a-b) and 1 algebraic 
equation (3.1 lb) and the partial derivatives with respect to the spatial coordinates 
may be computed by the Lagrange differentiation formula in which the interval 
between two subsequent equally spaced points does not change during the whole 
process of the numerical integration [4]. 

IV. JUNCTION CONDITIONS AND EXTERIOR FIELD 

Let Z be a smooth hypersurface separating the interior field from the exterior 
field of the empty space. The hypersurface itself is a part of both subdomains. 
In the comoving cylindrical coordinates of the interior metric the hypersurface is 
given by the equation 

S(z, r) = 0. (4.1) 

According to Lichnerowicz [7], the junction conditions require the continuity 
of the metric tensor and of its normal derivatives across the hypersurface Z if the 
metric is expressed in the admissible coordinates. However, Synge [13] has shown 
that even the nonadmissible coordinates may be used on both sides of the hyper- 



INTEGRATION OF EINSTEIN EQUATIONS 399 

surface .Z:, providing that they are obtained from the admissible ones by a CL 
transformations and that the following fonr junction conditions are satisfied 

CG/~,vhnterior = (G~S,vb3xterior at 2, (42) 

@icy being the Einstein tensor. The components giLV are still continuous across 21 
(since their transformation law involves only the first derivatives LW/&‘~), but 
their first normal derivatives g,,,, may be now discontinuous, 

The Einstein field equations, written now in the form 

GLLY zis RuY - +RGuY = 8n-Tpv9 ( .3) 

show that the right-hand side of (4.2) vanishes, because the exterior s 
assumed to be empty. Since S,” = 0 if v = 3,4, and since in the interior ~~rn~~~ 
the comoving coordinates are used for which Eq. (1.10) holds, t 
momentum tensor, given by Eq. (1. I), vanishes if 

p=Q at .Z. (4.4) 

Consequently, the Einstein tensor of the interior metric vanishes at 2 too if Eq. (4.4) 
is satisfied. In the comoving coordinates four junction conditions (4.2) reduce thus 
to one condition (4.4). 

In the time evolution the mass density varies according to Eq. (3.11b). If the 
condition (4.4) has to be satisfied at any moment, the pressure in the equation of 
state (1.3) must vanish when the mass density vanishes. This restriction imposed 
upon the equation of state is certainly quite irrelevant for the behavior of a 
collapsing object. The condition (4.4) reduces now to 

F(z, r) = 0 at .Z~ (4.51 

In the exterior domain the harmonic coordinates, define by the four c~o~d~~ate 
conditions [14] 

(-g)-“/yqag[ g”“( -,#P] = Q (4.6) 

must be used if the Einstein field equations’ 

pv z-z Q (4.7) 

have to reduce in the distant weak field to the homogeneous wave equations 

in which 

6 ‘khe meaning of this restriction is simple: It guarantees the length of an arbitrary vector to be 
the same in all the coordinate systems that are related to each other by the Cl ~rausfo~m~t~~ns~ 

7 It is advantageous to use the contravariant components in Eq. (4.7) if the harmonic 
coordinates are applied, because the expression for Rpv is then simpler. Cf. [14], pp. 192-194. 
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denote the deviations of g,U from the Minkowskian values 7~~. The asymptotic form 
of the coordinate conditions (4.6) is 

(fifiv - gifp),” = 0, & = fP%j& . (4.10) 

The d’alembertian operator q in (4.8) may be expressed in any chosen coordinate 
system (for instance, in spherical coordinates), but Eq. (4.10) holds only in the 
harmonic coordinates P, and further, the g Uv, i@‘, ijuy must be the components of 
tensors in the harmonic coordinates.8 

Two successive transformations from the interior comoving coordinates xfi to 
the admissible ones and from them to the harmonic coordinates 3 may be replaced 
by a single transformation given by the equation [14] 

q ix” SE (-g)~~ya/ax”)[( -gy gyaxqaxfl)] = 0. 

The six boundary values of gi”, 

(4.11) 

2” = gap(aXi/aX~)(aXk/aXB), (4.12) 

are the source of the gravitational radiation generated by the object inside the 
two-dimensional surface S(z, r) = 0. The remaining four components gU4 are given 
by the coordinate conditions (4.6). 

When one or more bodies forming an insular system are surrounded by the 
empty space-time, Eq. (4.11) and the boundary conditions (4.12) must be satisfied 
at the hypersurface .& of each body if the back-scattering of radiation [15] and the 
gravitational interaction are to be taken into account. It is obvious that such a 
difficult boundary value problem can hardly be either solved analytically or 
programed for a computer. 

After a thorough examination of the alternatives the author does not see any 
practicable other approach than the following one: Let /l be a spherical hyper- 
surface where the exterior field is so weak that the exact equations (4.7) and (4.6) 
may be replaced with a sufficient accuracy by the approximate ones (4.8) and (4.10). 
The body, or the insular system of bodies moving along the z axis to preserve the 
supposed axial symmetry, are assumed not to be surrounded by the empty space- 
time, but the whole domain inside A is now considered as the interior field where 
the mass density and the metric tensor are C3 continuous and expressed in the 
comoving coordinates of Sec. III. The mass density takes very low values outside 
the bodies and equals zero at /l. This is in fact a better description of the actual 
physical situation in the interstellar space than the assumption that the interstellar 

8 This is an analogue to the wave equation of the electromagnetic theory nEi = 0. The d’Alem- 
bertian operator may be here expressed in arbitrary coordinates, but the Ei must be the Cartesian 
components of the vector E. The harmonic coordinates are thus in this sense a generalization of the 
Cartesian coordinates of Euclidean geometry. 
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space is empty. In this way the many body problem is reduced to one body ~ro~~~~ 
and the boundary between the interior field and the exterior field of the empty 
space is shifted to the region where the interior metric differs from the ~inkowskia~~ 
by very small quantities W so that the equation (4.11) with the background metric 
reduces here to the wave equation of Euclidean geometry with the particular 
solution 

(4.13) 

The harmonic coordinates outside .A are thus identical with the Cartesian 
coordinates. 

From ten components ha” only I%*~ is of importance; the other nine corn~~~e~ts 
are negligibly small. Since the interior coordinates are transformed to the exterior 
ones by Eqs. (4.13), the h4* and h,, of the interior metric are related at A to P4 an 
I&, of the exterior metric by 

h44 = h44 
i fi,, = h,, * (4 14) 

Since the indices are lowered and raised at A and in the exterior domain by the 
background metrics, it holds also that 

h44 = -h 44 i 
&44 = -h 

44 ~ (4.15) 

V. CAUCHY INITIAL DATA 

Because of the transient character of the generation of gravitational waves the 
initial values of gu” at the entire hypersurface f = const. of the empty space never 
can be known, for in them the whole past gravitational history of the objects 
generating the waves is contained. The gby must, of course, satisfy the Lichnerowlcz 
initial conditions (1.9), but this is a minor restriction. An improper choice of the 
initial values g,, might imply the presence of gravitational waves generated not by 
the bodies, but somewhere at infinity. 

However, the Einstein equations are quasilinear hyperbolic differential eq~a~~~~s 
of second order for the integration of which the Cauchy data at the initial hyper- 
surface t = i = 0 must be given. Fortunately, in the weak held zone the field 
equations reduce to the homogeneous wave equations for which the classical 
Huygens principle [I 6, 171 holds. The principle asserts that sharp signals are 
transmitted in three-dimensional space as sharp signals, that is, that the solution 
of the wave equations describing the propagation of signals emitted at t = 
depends upon the data at the boundary of the conoid of dependence, not upon t 
data inside. The principle implies that the signals are transmitted only 1~1 t 
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direction of the propagation of waves, but not in the opposite direction, for the 
propagation towards the source of radiation would cause reverberation and make 
the transmission of sharp signals impossible (this occurs in the space of even number 
of dimensions). 

Consequently, if the space outside A is assumed to be empty and with no 
gravitational waves incoming from infinity, then the initial data inside A, satisfying 
the initial conditions (1.9), represent the Cauchy initial data which determine the 
whole past and future gravitational history of all the bodies inside A. The 
gravitational waves propagating towards infinity are to be computed either with 
the help of the Huyghens principle from the field at the wave front B or with the 
help of the Fourier transform from the field at A. There exists no back-scattering 
at the wave front % lying in the immediate vicinity of A and, consequently, no 
back-scattering at the hypersurface A (Sec. VI). 

Cauchy initial data alone cannot exclude the presence of a short pulse wave 
inside .A which was generated at infinity and focussed onto this domain. However, 
if such a pulse wave were present, then the solution of the field equations (3.7a-f) 
for the interior domain would be determined not only by Cauchy initial data 
inside A, but also by the boundary values at A during the time interval when the 
incoming pulse wave was crossing the hypersurface A. If the integral of Eqs. (3.7a-f) 
is determined by Cauchy initial data inside A only, then this fact implies the 
absence of whatever incoming radiation. 

VI. WEAK FIELD ZONE 

In order to determine the relation between the boundary values at the spherica 
hypersurface A, given by the equation 

r - rA = 0, rA = const., (6.1) 

and the distant exterior weak field described in the spherical coordinates (r, 8, 4, t), 
let us assume that the interior problem has been solved in the whole interval 
-co < t < co so that the boundary values @j’(O, t) are known. The &” may be 
expanded into a series of spherical harmonics: 

m 

The Fourier transform of AT(t) may be denoted by a:(f): 

ar(f) = ltrn A:(t) e21rift dt. 
--co (6.3) 
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The unknown components L@v(r, 0, t) are now given by the ~~~~r~Qsit~o~ of the 
well-known particular solutions of the linear wave equation (4.8) in sphericA 
coordinates: 

-+ .!” ’ 
-02 

[H327i j f / r)/W~‘(277 1 f j r,)] @r(f) eeariift df 1, (6.4) 

where 

@(,) = (&lz) e-i(a/2)(l+n) n kg (-2iz)-k[(n + k)!/k!(n - PC)!], (6.53”) 

H!‘(Z) = (e-iZ/Z) ei’“/2”l+n’ n -go (2~2)~qn + k)I/ki(fl - k)!], (6.5b) 

are the spherical Hankel functions. Equation (6.4) must, of course, contain only 
outgoing waves. Therefore the spherical Hankd functions I$$j(z) are used in 
Eq, (6.4) iff > 0, and HA2’(1 2 I) if < 0. 

Since Hz’(z) and HA”(z) are complex functions of a real argument, the functions 
JS given by Eq. (6.4) remain always finite for z > 0, with H:‘(Z) and ?$Z’(Z) 
approaching 

;+j &)(z) = (p/z) +(n/z)(l+nip (fxa) 

;+& &f’(z) = (@/z) ~~(~l~H~-w)* (6.Gb) 

The radiation field tends thus to zero with increasing distance from the radiation 
hypersurface A for whatever boundary values, but the Geld retains its axial 
symmetry even at infinity. 

Hf 
277 IfI Y/j = 27TrJX > 1, (6.7) 

X being the wavelength of the gravitational radiation, then it holds approximately 

H327rfi)/(H32*fiA) c (r,/r) fPifb-m) (e;.Sa) 

Hjf’(277 1 f / r)/Ht’(27r 1 f / r) g (v,/r) e2qif’r-m’ if f < 0. (6.8b) 

The substitution of these relations into Eq. (6.4) and the application of Fourier 
integral theorem yields 
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Comparing Eq. (6.9) with Eq. (6.2) one finds 

P(r, 8, t) s (rA/r) hY(,“(B, t - [r - rJ). (6.10) 

The author is aware that as 1 f 1 -+ 0 the approximate relations (6.8a,b) must not 
be applied, because they do not satisfy the condition (6.7). However, the sensitivity 
of a detector of gravitational waves is frequency-dependent. The coefficients a:(f) 
in Eqs. (6.4) must be therefore multiplied by the sensitivity function of the detector 
in order to obtain, in Eqs. (6.9) and (6.10), the observable part of the gravitational 
radiation. As long as the radius rA of the hypersurface A is much greater than the 
longest wave length to which the detector is sensitive, the approximate relations 
(6.10) may be used. The weak radiation field (or, at least, its observable part) thus 
propagates, in the terminology of Courant and Hilbert [16], as a “relatively 
undistorted” progressive wave. 

In order to determine the distant radiation field it is thus sufficient to expand the 
only relevant component hgq = -(e-2x - 1) = -J$4 at A (cf. Eqs. (4.14) and 
(4.15) into a series of Legendre polynomials (6.2) with the coefficients 

&4(t) = (4 + n) J” ii$f(B, t) P,(cos I!?) sin B 0%. 
0 

(6.11) 

The distant radiation field is then given by Eq. (6.9). 
Concluding, let us remark that the wave equation (4.8) reduces to the Laplace 

equation and the coefficients A: in (6.2) are constant if the exterior field is generated 
by a stationary metric at A. The stationary exterior field is in this case given by the 
superposition of the well-known particular solutions of Laplace’s equation in 
spherical coordinates: 

Epy(r, 0) = f (r,/r)l+” A”,“P,(cos 0). (6.12) 

If r > rA , it holds approximately that 

P”(r, 19) z (rA/r> Ar. (6.13) 

The distant stationary field becomes thus always spherically symmetric with A: 
is given by the formula 

/$;=g 
s 71 P”(8) sin e de. (6.14) 

0 
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VII. LICHNEROWICZ INITIAL CONDITIONS 

The solution of Lichnerowicz initial conditions (I .9) is far more dit&xlt than the 
time evolution problem of Sec. III. In Sec. II it has been shown that witbout loss of 
generality the functions u and ZJ may be put equal to zero at the initial moment 
everywhere and to w at z = 0 (cf. Eqs. (2.9a,b) and (3.4)). In this se&ion the 
equations (1.9) will be not written down in full generality, because they are too 
complicated, but only for the case when at t = 0 

u=v=w=Q everywhere. (7.1) 

The meaning of this restriction is simple: At f = 0 all the vortiicity filaments are 
curves lying in the Euclidean planes + = const. If the matter does not rotate, 
Eq. (7.1) represents no restriction of generality. 

Equation (7.1) is now substituted into Eqs. (3.19~d) and into the formulas of 
Appendix B. The initial conditions (1.9) take thus the form: 

124e-2x/2k44 E q2 + a42 + da2 + x2) - Ada2 + g2) 

+ a4(02 + x2) + (% - I@&+ + @,&“*h2 -I- x42 

+ ((J2 + X21(% - P4 + 04 - x49 - (2aolrX%t - P4 - 2x3 

•k (a.4 - P4 + 04 - xdrl 

- $e-2V{u41 - wJ(11~ - Pl - (a1 + x3(1 i ~h13i~44Hj = 
(7.2b) 

1~4e2a-2x/k44r2 = v&1 - p1 - (q + x1)(1 + 2b,,/k"43] 

- vql + e2"-2P{w4[r(j32 - a2 - u2 - x2) - 4 

- (2bOOP4*)h2 + rx2 t- 1 - 2ao)l - rv~~~) 

+ (2ue-2VW{~ll + xl1 - Co1 + ~d(a~ - /-$ - cl + ~3 
+ e2a-28 razz + x22 - aoou + boo) + (a2 - B2 + 2a,)/r 

+ (02 + x2x012 - P2 + c2 - x2> - (4~~~~~/~2) 
-i- a,(1 + &)(& - 012 + 5’2 -t 3,2)/fj> + 16~~ae2~-xl~4~ = 

(7.26) 
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(2ez~+2~/r2)[(~~e-2x)(ue-2~-2x/k44) + 144e-2x] 

= v42 - (4ae-zx/k44)(crl + xl) v4 + e2u-2ak44u42 

- (4e2a+Zo/rzXk44~4P4 + (a4 + P4)(~4 + ~sY~)) 
+ ezol-2aw4{w4r2 - (4ae-2x/k44)[1 - a, + r(02 + x2) - a,&,,]) 
+ (4e20--2x /r 2 >{/%I + MA - 4 + (llk44Null + s% + ~1 - 41 
+ @oolk44)[xn + xdP1 - 011 - xdl> 
+ (4e2a+20-24-2x/r2)(a22 + a2(a2 - j12) 
+ (l/k44>hz - 2%lhJo + a2(a2 - P2 + 02) + (a2 - P2 + 2o2)lr 

+ h3MP2 - 012 + 02) - &“(3 + bJm 
+ Nml~44~~~22 + xz(az - P2 - x2 + %/dl) 
+ (32vpe 2a+2u-2x/r2)[(ex/k44) - (p/p)] = 0; (7.2d) 

where 
y = a2e-20-2x, (7.3) 

b,, = 1 - k44. (7.4) 

The condition I44 = 0 has been replaced in Eq. (7.2d) by a linear combination of 
I34 and 144 to make the equation simpler. 

It is advantageous to choose a4, p4, u4, W, as unknown functions of (z, r), 
because only the first derivatives of these functions with respect to z or r occur in 
Eqs. (7.2a-d). The general solution is too complicated (but it can be found), 
therefore the equations will be solved here for the special case when, at t = 0, 

a4 = p4 = 0, = p4 = 0; (7.5) 

i.e., when the functions 01, /3, (J, and the mass density p have just reached their 
extremum values. Equation (3.14) shows that in this case (since w, # 0) 

w=o everywhere. (7.6a) 

The unique solution of Eqs. (7.2a,b) is now 

u4 = 0 everywhere. (7.6b) 

The remaining unknown functions v4 and w, are determined by the quasilinear 
differential equation of first order (7.2~) and by the quadratic algebraic equation 
(7.2d). 

In the preceding paper [18] dealing with the stationary equilibrium of relativistic 
rotating objects it has been shown that in this equilibrium the conditions (7.1), 
(7.5), (7,6a,b), and vq = 0, are satisfied. Supposing that the resulting equations in 
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1181 have been solved either exactly or approximately (for instance, under 
assumption of a slowly rotating star), we may now consider the ~~~~libr~~rn to 
slightly disturbed, say, due to a change of the equation of state. In this way we 
obtain a set of the initial data satisfying the conditions (7.%), (7.5), and (7.&ra,b), 
and corresponding to an initial situation of a collapsing rotating star. For these 
data the functions ZJ* and wq are now to be computed in order to satisfy the initial 
conditions (7.&d). 

Equation (7.2d) may be rewritten in the form 

02 - 2Ew, + e2a-28r2w4(wq - 244 - N = 0. (7.7) 

The functions L, M, N, as well as the functions I.*, L1, IL,*? IF, &VI:, P”, PI*? 
Q*, S* introduced later, are defined in Appendix C. The subscript “1” denotes the 
partial derivative with respect to z; the asterisk indicates the values of the f~~ct~o~ 
at r = 0 (for instance, L* = L(z, 0)); the functions P* nd PI* stand in no 
relation to the functions P,, , P,“y , P, defined in Appendix 

Equation (7.7) can be satisfied at r = 0 only if the sum of terms involving Y-~ i 
vanishes. To fuEEl this requirement we choose 

$+gz> = G”(z) = +a,*, - (3/2)(n& - y”) 

- ez~*-2B*(/3~l + &*[(3/2) &* - B,“]) 

The fnnctions B* and y* are defined by 

B” = LP(z)7 

and (cf. Eqs. (7.3) and (3.3b)) by 

We now assume that the mass density exhibits a reflection symmetry wit 
respect to the hyperplane z = 0. The function v4 is thus an odd function in z. 
~~~at~o~ (7.7) shows that at z = r = 0 it must hold that 

1;s N(0, r) = P*(O) - (8/3) eaB*10)-ax*(0)01~~22(~) = 0. 

ence 

cgzz2(0) = c = (3/8) e2x*(0)-2B*wp*(Q) = (.Qn&* (7.ln) 

Equation (7.7) determines first the values of w4 at z = r” = 

w&j, 0) Z M*(o) +. ([n/r*(o)y - 4e’a*(O,-28*101--2x*(O)S*(0))1/2 (7.12) 
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where S*(O) is defined by the formula 

s*(o) = -ge2x*(o) lj4;: N(0, Y)/P, 

and, explicitly, in Appendix C. 

(7.13) 

The value of ~~(0, 0) is also given by the differential equation (7.2~). The 
requirement that they must be equal to each other yields the integrability condition 

am,,,, = D = 3e-2B*(o){a*2e-2x*~0~[,d,*,(0) + x;(O)]” - Q*(O)} 

- 12e2B*(0J{[W,(0, 0) - M*(O)] e-2B*(o)+x*(o) - 4~~*(0) .*}z = const. 
(7.14) 

Q*(O) is defined by the relation following from Eq. (7.7) in which the fact has been 
taken into account that vg , as an odd function in z, vanishes at z = 0: 

V&(0, 0) = L,“(O) i li+i (a/az)(L2 + N)l/2 
f-0 

= L,*(o) f- {Iii [(I52 + N)/z2]}1/2 
r+O 

= L,*(O) i ([L,*(O)]2 - 4e-2X*(0)[Q*(0) + (l/3) e2B*(0)a~12222(0)])1/2. 
(7.15) 

Since v*(z, r) and w&, r) have been chosen as unknown functions, Eqs. (7.2c,d), 
together with the assumption that the mass density is distributed with reflection 
symmetry with respect to z = 0, restrict the free choice of the initial values of the 
functions 01, /I, U. In the preceding calculation the restriction is put upon the 
function 01. It is given by the formula 

a = B*(z) + (l/2) ?G*(z) + (l/24) r4C + (l/48) z2r4D 

+ z4r4q(z, r) + Y%(z, r). (7.16) 

The functions B*(z), q(z, r), s(z, r), as well as /3(z, r) u(z, r), a(r), may be freely 
chosen with the restriction that they must be even functions in z and in r and that 
the discriminant in Eq. (7.12), as well as in Eqs. (7.19 (7.20), and (7.23) deduced 
below, does not become negative in the whole integration domain. We choose B*, 
q, s, j3, 0 equal to zero at A and negative inside the bodies and at their close 
surroundings so that the point grid used in the rmmerical integration becomes 
denser here (the functions must be of course, at least C3 continuous). G*(z) is given 
by Eq. (7.8). 

The function !&z, r) may be now computed from Eq. (3.11b): 

p = pe”+a+w, (7.17) 

The mass density must, of course, vanish at the spherical hypersurface A. 
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The value of w4 at z = r = 0 is already given by E . (7.12). The values at z = 0, 
r > 0 are determined by the algebraic equation foil 

At the Y = 0 the differential equation (7.2~) reduces to the algebraic equation 
for wg: 

= (I/4) e25*--2B*((cx1* - 2p1* - xl”) 

- [L*L1* + (l/2) Pl* - (413) e2B*--2x”(a~222 + ~(cL~.* - x1*) CX~~~~)I/PP” 

+ 4a*e-2x*x1*(/31* + xl*)) + M* + 47~p*kE*e-~*~~~~“~ (7.19) 

where 
f$* = (L*2 + p* - (g/3) @*-2x*a~222)1/2 

x sgn(47ip*(()) a*e-x*(0)+25*(O) + 

The sign of H* is given by the same requirement that yields Eq. (7.14) The function 
I?&, 0) is now given by Eq. (7.7) which takes here the simple form 

u*(z, 0) = L” f (7.21) 

y the substitution of the corresponding expressions for vq and val from Eq. /7.7), 
Eq. (7.k) reduces to the quasilinear partial ~i~erential equation of the first order 
determining the function w4 at z > 0, r > 0: 

where 

(7.22) 

@ = (:/Y)(w4(r(p2 - a2 - cJ2 - x2) - 4 - v-70,1~4”)I.1 - 2% + r(u2 -I- x&) 
-I- e2@-2q(L + H)[ol, - p1 - (ul + x1)(1 + 2b,,/k@)] 
- El + (2ue-z~/k44)(e2R-z~[ull i xl1 - (cl + ,&(o”~ - /I1 - 5, - xl)] 
+ 022 + X22 - aoou + boo) + (u2 -I- x&a2 - p2 -!- 02 - x3 
+ (a2 - p2 + 2%&” - 4a02y i a,(l A- boo)(Pz -- a2 + C$ -t 3X2)/l”) 
+ 16n-pe-x+2aalk44j + (I/H)(w4(nvq(oll - PI) 

- 2PM[cQ - Pl - Xl - (~oo/k43(% + x1x 
- (2ae-2xlk44)[o12 + xl2 + 2a,b,,(ul + x,)/v]] - (ez~-2~/r>(L.L, -j- ~iNl)>. 

(7.23) 

an 

N = [e2a-2ar2w,(2A4 - w4) -j- L2 + N]1/2 s (7.24) 

581/15/P=8 
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After the differential equation (7.22) has been multiplied by J-J, it becomes 
obvious that it is satisfied at z = 0, because wq(z, r) is an even function in z and 
W(0, r) = 0 (cf. Eqs. (7.12)-(7.14) and (7.24), (7.18), and the definition of L in 
Appendix C). 

The integration of the quasilinear partial differential equation (7.22) can be 
reduced in the usual way [19] to the integration of the following two simultaneous 
ordinary differential equations 

dw,/dr = CD’, (7.25) 

dzjdr = r(M - wJ/H, (7.26) 

in which the independent variable is the coordinate r. The function w, and the 
coordinate z are dependent variables to be computed simultaneously by the 
numerical integration. The initial values at r = 0, given by Eq. (7.19), are 

w4 = WP(Zi 3 (9, z = zi ) (7.27) 

with zi > 0 indicating the coordinate z where the integration starts and 

@ = 0, at r = 0, (7.28) 

because w&z, r) is an even function in r and 

dw,/dr = w,, + w&dz/dr) = 0, at r = 0. 

After the integration has been carried out, the values of wq(zi , r) are known at 
z = z(zi , r). From these values the function wq at the prescribed points of each 
column of the two-dimensional grid used in the time evolution program (Sec. III) 
is to be computed by numerical interpolation taking into account that the function 
w4(z, r) is an even function in z. 

Instead of integrating Eqs. (7.25) and (7.26) and successively eliminating the 
parameter zi it is possible to proceed in the following way. The integration domain 
be covered by a two-dimensional grid of equally spaced points (the interval between 
two neighbouring points is to be chosen here smaller than the interval of the grid 
in the time evolution problem). At the first column of the grid points (r = 0) the 
values of w, are known [they are given by Eqs. (7.12) and (7.19)]. The values of wgl 
at each point of this column can be thus determined by numerical differentiation 
taking into account that w4(z, r) is an even function in z. Using, for instance, a 
fourth-order Runge-Kutta method for the integration of ordinary differential 
equations, we can now compute the values of w, at each point with z > 0 in the 
second column. At z = 0 the values ~~(0, r) are given by Eq. (7.18). Henceforth 
the same procedure can be repeated. In this way the numerical integration of one 
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partial differential equation (7.22) is reduced to the numerical integration sf a 
system of N simultaneous ordinary differential equations, IV being the number of 
points in one column. 

After the function IV&, r) has been determined at all the points of tihe two- 
~i~~~s~~~~~ grid of Sec. III, the function zrq(z, r) is to be computed at these points 
with z > 0, I > 0 by the equation 

following from Eq. (7.7). The function L is defined in Appendix G and the fun:tiors, 
M by Eq. (7.24). 

Concluding, let us remark that the fourth, fifth, and sixth de~~~a~i~es ocwrring 
in the equations of this section are the result of the limiting processes r -+ 0, z ->- 0. 

APPENDIX A 

THE DETERMINANT AND THE CONTRAVARIANT COMPONENTS OF THE IL@ZRIC 

TENSOR 

Tm F~JNCTI~NS P,, AND P, 

APPENDIX C 

DEFINITIONS OF FUNCTIONS OCCURING IN SEC. VII 

These three Appendices are deposited at AS%S/NAIXS 
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